

South Carolina Regional Transmission Planning

Stakeholder Meeting

Hilton Garden Inn Charleston Airport

North Charleston, SC

December 09, 2015

Purpose and Goals of Today's Meeting

- Review of Key Assumptions and Data for Next Planning Cycle
- Review of Major Transmission Expansion Plans
- Review and Discuss Assessment and Planning Studies
 - CTCA ERAG
 - SERC Other

Transmission Planning Key Assumptions and Data

SCE&G

Phil Kleckley

Modeling Assumptions and Data

Dispersed Substation Load Forecast

- · Summer/Winter Peak, Off-Peak and Seasonal Load Levels
- Resource Planning provides 10 Year system load forecasts
- Transmission Planning creates dispersed substation load forecasts

Load Forecast Process

Resource Planning Input

- Develop 10 year projected forecast based on:
 - 10 year historical load summer and winter loads
 - Load factors by customer class
 - Considers weather, personal income, population growth, economic conditions, load management, energy efficiency, etc
 - Applies regression analysis to historical data to develop models
 - Applies forecasted growth rates to develop future projections

SCE&G 10 Year Load Forecast

	<u>Summer</u>		<u>Winter</u>
2015	4,750 MW	2014/2015	4,970 MW
2016	4,822 MW	2015/2016	4,602 MW
2017	4,925 MW	2016/2017	4,664 MW
2018	5,033 MW	2017/2018	4,744 MW
2019	5,142 MW	2018/2019	4,862 MW
2020	5,256 MW	2019/2020	4,909 MW
2021	5,365 MW	2020/2021	4,978 MW
2022	5,464 MW	2021/2022	4,043 MW
2023	5,566 MW	2023/2024	5,174 MW
2024	5,659 MW	2024/2025	5,241 MW

santee cooper

Load Forecast Process

Load Forecast Process

Transmission Planning Input

- Obtain summer and winter snapshot meter data from most recent seasons and adjust for load switching
- Develop 10 year projected forecast based on:
 - 10 year historical loading
 - Feedback from Distribution Planning, Local Managers, Large Industrial Group and Transmission Services Manager
- Wholesale loads are modeled as provided by the customer
- Dispersed forecasted load points are integrated into Corporate

Modeling Assumptions and Data

Generation

- · Annual generator ratings used
- Input from Generation Expansion Plan Reductions/Additions
- Input from Generation Maintenance Schedule
- Generators dispatched economically
- Merchant Generators included, modeled at contracted output

Merchant Generation

Generation Plan

Reductions

• 345 MW Coal 2020

Tentative, subject to approval of VCS 2&3 revised schedule by SCPSC

Generation Plan Additions

- 223 MW solar Interconnection Agreements for 2015-2017 (tentative)
- 1117 MW of SCE&G/Santee Cooper Base Load Nuclear Generation planned for 2019 (V. C. Summer)*
- 1117 MW of SCE&G/Santee Cooper Base Load Nuclear Generation planned for 2020 (V. C. Summer)*

* Date is tentative, subject to approval of VCS 2&3 revised schedule by SCPSC

Generation Changes

Modeling Assumptions and Data

Transmission Network

- Input from Transmission Plan
- Neighboring Transmission Systems Modeled

Modeling Assumptions and Data Planned Transmission Facilities 4/21/2015

South Carolina Electric & Gas Planned Transmission Facilities				
Planned Project	Tentative Completion Date			
Bayview - Charlotte St 115 kV U/G #2 Repair/Replace	Dec-15			
St. Andrews - Queensboro 115 kV Rebuild	Dec-15			
Okatie - Hardeeville 115 kV #2 Line Construct	May-16			
Okatie 230/115 kV Sub Construct and Line Upgrades	May-16			
Blythewood 115 kV Switching Station	May-16			
Church Creek upgrade 230/115 kV transformer & Relocate 224 MV transformer	May-16			
Summerville upgrade 230/115 kV transformer & Relocate 224 MVA transformer	May-16			
Queensboro 115 kV Switching Station	Dec-16			
Urquhart Replace Switch House	Dec-16			
AM Williams - Cainhoy 230 kV #2 and 115 kV #2 Line Construct	May-17			
Cainhoy - Hamlin Tap 115 kV Line Section Rebuild to Double Circuit	May-17			
Canadys - St George 230 kV Line Upgrade	May-17			
Dunbar RdDixiana 115 kV Upgrade	May-17			
Dunbar Road - Orangeburg 115 kV Line Rebuild to Double Circuit	May-17			
Orangeburg - St. George 115 kV #1/#2 Lines Rebuild to Double Circu	uit May-17			

Modeling Assumptions and Data

System Interchange

- · Firm scheduled transfers included
- · Coordinated with Neighbors

Questions?

Transmission Planning Key Assumptions and Data

Santee Cooper

Rick Thornton

Components

- Demand Forecast
- Transmission Network
- Generation Resources
- Actual System Operations

Demand Forecast

Load forecast is developed with contributions from:

- Santee Cooper (retail, industrial)
- Central Electric Power Cooperative, Inc. (retail, industrial)
- Cities of Bamberg and Georgetown (municipal)

Santee Cooper 10 Year Load Forecast

	<u>Summer</u>		<u>Winter</u>
2015	4979 MW (June 16)	2015/2016	5,156 MW
2016	4,626 MW	2016/2017	5,083 MW
2017	4,554 MW	2017/2018	4,992 MW
2018	4,460 MW	2018/2019	4,974 MW
2019	4,430 MW	2019/2020	5,014 MW
2020	4,472 MW	2020/2021	5,064 MW
2021	4,527 MW	2021/2022	5,121 MW
2022	4,582 MW	2022/2023	5,185 MW
2023	4,642 MW	2023/2024	5,249 MW
2024	4,698 MW	2024/2025	5,310 MW

Transmission Network

Models include:

- Existing transmission system as well as committed Santee Cooper additions (uncommitted facilities are subject to change in scope or date).
- Confirmed firm PTP transmission service reservations
- Neighboring transmission system representations
- All facilities assumed to be available for service
- Normal operating status (in-service or OOS) of facilities is represented.

Transmission Network

- Uniform rating methodology is applied to transmission facilities.
- Base case models are updated annually.
- Study models may be updated prior to any study effort.

Planned Transmission Facilities in the Model

•	Winyah - Bucksville 230 kV Line	12/31/2015
•	Jefferies – Medway #2 115 kV Line	05/31/2016
•	Carnes – Medway #2 115 kV Line	05/31/2016
•	Richburg-Flat Creek 230 kV Line	06/01/2016
•	Bucksville-Garden City 115kV Line	06/01/2016
•	Bucksville-Myrtle Beach 115 kV Line	12/31/2016
•	Perry Road-Myrtle Beach #3 115 kV Line	06/01/2017
•	Sandy Run 230-115 kV Substation	05/31/2018
•	Pomaria-Sandy Run 230 kV Line	05/31/2018
•	Marion-Red Bluff 230 kV Line	12/31/2018
•	Sandy Run-Orangeburg 230 kV Line	06/30/2019

Generation Resources Existing Transmission Connected Generation

Cross 1-4

Winyah 1-4

Hilton Head Turbines 1-3

Myrtle Beach Turbines 1-5

Jefferies 1, 2, 3, 4, 6 (Hydro)

Allendale (biomass)

Dorchester (biomass)

J.S. Rainey Power Block 1

J.S. Rainey 2A, 2B

J.S. Rainey 3-5

Spillway (Hydro)

St. Stephen 1-3 (Hydro)

V.C. Summer #1

Domtar (co-gen)

Generation Resources Projected Capacity in Models

V. C. Summer #2 (2019)

V. C. Summer #3 (2020)

Actual System Operations

- Network Transmission Lines Operated Split
 - Newberry-Batesburg 69 kV Line
 - Winnsboro-Pomaria 69 kV Line
 - Winnsboro-Richburg 69 kV Line #1

Transmission Planning Key Assumptions and Data

Stakeholder Input, Comments and Questions

SCRTP Regional Planning

Clay Young

FERC Order 1000 Summary Regional Requirements

- Open and transparent procedures by which TPs identify and evaluate solutions that may be more efficient or cost-effective than current plans developed through Local Planning and IRP processes
- Any entity can submit transmission proposals that they believe are more efficient or cost-effective than current planned projects
- TPs will evaluate proposals in consultation with stakeholders to determine whether the proposed project is more efficient or cost-effective for the region.

Major Transmission Expansion Plan

SCE&G

Jeff Neal

Disclaimer

- These projects represent the current transmission plans within the SCRTP footprint
- The expansion plan is continuously reviewed and may change due to changes in key data and assumptions
- This presentation does not represent a commitment to build

SCE&G Planned Projects

SCE&G Current Projects

- Active Projects
 - Saluda River 230/115 kV Substation (New Nuclear Development)
 - St. George 230kV Substation (New Nuclear Development)
 - Cainhoy 230/115 kV Transmission Substation (System Improvement)
 - Lake Murray SRT Lyles 230/115kV (System Improvement)

Future Projects

- Orangeburg VCS2 St. George 230 kV Fold-in (System Improvement)
- St. George Summerville 230 kV #1&2 (NND/System Improvement)
- Summerville Pepperhill 230 kV (System Improvement)
- Toolebeck 115 kV Switching Station (System Improvement)
- Burton Yemassee 115kV #2 Rebuild (System Improvement)
- Canadys Ritter 115 kV Rebuild SPDC 230/115 kV (System Improvement)

Active Projects

Saluda River 230/115 kV

- Substation energized 9/15/15
- Lyles SRT 230&115 kV completed 9/15/15, SRT Lake Murray 230&115 kV completed 10/15/15 (NERC TPL System Improvement)
- VCS2 Saluda River 230 kV complete by <u>12/31/15</u>
- Saluda Hydro Saluda River 115 kV complete by <u>12/31/15</u>
- Remaining 115 kV rebuilds surrounding Saluda River complete by $\frac{2}{115}$

Saluda River Transmission 230/115 kV

V.C. Summer

St. George 230 kV Switching Station

- Scheduled for completion May 2016
 - Seven 230 kV line terminals
 - Back to Back bus tie breaker
- Canadys St. George 230 kV upgrade to B1272 ACSR complete by May 2016
- St. George Orangeburg completion date delayed to May 2017
- St. George Summerville 230 kV #1&2 completion date delayed to May 2018

St. George 230 kV Switching Station

178)

.

Cainhoy 230 kV Substation - Phase 1 Completion by December 2015

Phase I (Completed by May 2016)

- Construct 230/115 kV transmission substation near existing Cainhoy distribution substation
 - Three 115 kV line terminals
 - Back-to-back bus tie breakers on 115 kV bus
 - One 230/115 kV 336 MVA autotransformer with high side and low side breakers
- Add one 230 kV terminal to #1 AM Williams 230 kV bus
- Fold Williams Mt. Pleasant 115 kV #2 into Cainhoy 230 kV and 115 kV
 - ≻Creates Williams Cainhoy 230 kV & Cainhoy Mt. Pleasant 115 kV #2
- Fold Williams Mt. Pleasant 115 kV #1 into Cainhoy 115 kV #2 bus
 - Creates Williams Cainhoy 115 kV and Cainhoy Mt. Pleasant 115 kV #1

mission Planning

Cainhoy 230 kV Substation - Phase 2 Completion by December 2016

A SCANA COMPANY

Phase II (Completed by December 2016)

- Rebuild Cainhoy Hamlin 115 kV to SPDC
 - Creates Cainhoy Mt. Pleasant 115 kV partially 1272 ACSR & Cainhoy – Hamlin 115 kV B795 ACSR
- Add 115 kV Hamlin terminal
- Rebuild Williams Cainhoy 230 kV SPDC
 Creates Williams Cainhoy 115 kV #1 B795 ACSR
- Upgrade terminals at Williams to 2000A for Cainhoy 115 kV circuits

mission Planning

mission Planning

- Completion date delayed to **December 2016**
- Construct 115 kV transmission substation near existing Aiken Transmission and Owens Corning substations
 - Four 115 kV line terminals
 - Bus tie breaker (Future Back-to-Back)
 - One 24 MVAr and one 36 MVAr capacitor
 - Built to accommodate future growth, i.e. 230/115 kV transformation and distribution transformer
- Fold-in of Urquhart Owens Corning 115 kV line
- Fold-in of Aiken Denmark 115 kV line
- NERC TPL System Improvement
 - Operating guides in place to alleviate potential branch overloads and voltage concerns

1

Voltage\Per

-1.100 pu

1.000 pu

-0.850 ni

mission Planning

mission Planning **Toolebeck 115 kV Transmission**

Voltage\Per

1.000 pu -0.850 pu

1.100 pu

Voltage\Per

-1.100 pu

-1.000 pu

0.850 pu

🖌 Á BAIKI

mission Planning

mission Planning

- 51

santee cooper

mission Planning

Future Projects

Orangeburg VCS2 – St. George 230 kV Fold-In

- Fold in the future VCS2 St. George 230 kV line at Orangeburg 230/115 kV Transmission substation
- Replace 2000 Amp bus-tie breaker with 3000 Amp breaker
- Project now required to alleviate potential N-2 contingency overload associated with retirement of Canadys Coal fired generators
- Increased support of Orangeburg 230 kV will decrease the burden of the 115 kV system in Orangeburg/St. George areas
- Scheduled for completion by December 2017

Orangeburg East 230/115 kV Fold-In VCS2 – St. George 230 kV

Pepperhill – Summerville 230 kV

- Rebuild existing portions of Canadys Williams 230 kV & Williams Summerville 230 kV lines SPDC between Pepperhill and Summerville, adding new Pepperhill – Summerville 230 kV B1272 ACSR line
- Project originated back in 2005, various delays due to new construction and load projections in Charleston/Pepperhill/Summerville areas
- Project now required to alleviate potential N-2 contingency overload associated with VC Summer Units 2&3 operation and new transmission lines into Summerville
- Scheduled for completion by December 2018

Pepperhill – Summerville 230 kV

sion Planning

Pepperhill – Summerville 230 kV

n Planning

EXISTING R / W CORRIDOR

Burton – Yemassee 115 kV #2 Rebuild

- Remove existing H-Frame 477 ACSR 115 kV line, rebuild approximately 21 miles SPDC B795 ACSR
 - Burton Yemassee 115 kV #2 upgraded
 - Burton Yemassee 115 kV #3 created
- Upgrade/Add 115 kV terminals at Yemassee & Burton
- Project required to alleviate potential N-2 contingency overload that requires load shedding under peak conditions
 - Radial load shed only, does not have any adverse effects on BES
- Completion date delayed to <u>December 2017 (Tentative)</u>

Burton – Yemassee 115 kV #2 Rebuild

Burton – Yemassee 115 kV #2 Rebuild

Current Configuration: 1-230 kV 1272 ACSR 2-115 kV 477 ACSR

Total Capacity: 500 MVA

62

Future Configuration:1-230 kV1272 ACSR1-115 kV477 ACSR2-115 kVB795 ACSR

Burton

Total Capacity: 1,074 MVA

- Most recent addition to "Post Nuclear" planning horizon
- Project required to alleviate several potential NERC TPL-001-4 contingencies that will cause the loading/overload of transmission system facilities in SCE&G's southern region
- Two phase project:
 - 1.) Fold the Williams Canadys 230 kV line into Pepperhill (2020)
 - 2.) Rebuild approximately 18 miles Canadys Ritter 115 kV line as SPDC with Canadys – Ritter 230 kV B1272 ACSR and Canadys – Ritter 115 kV 1272 ACSR (2022)

Charleston Region 230 kV Transmission (>2018)

Year/Season	Contingency	Monitored Element	Flow (Rating)
<mark>20195</mark>	C5: St. George – Summerville 230 kV #1 and St. George – Summerville 230 kV #2 SPDC	<mark>Canadys – Church Creek 230 kV</mark>	<mark>94% (376.3 MVA)</mark>
20195	C3: Pepperhill – Summerville 230 kV and Summerville 230/115 kV Transformer 1/2	Summerville 230/115 kV Transformer 2/1	94% (336 MVA)
20195	C3: Church Creek – Faber Place 230 kV and Church Creek 230/115 kV Transformer 1/2	Church Creek 230/115 kV Transformer 2/1	95% (336 MVA)
<mark>20205</mark>	C5: St. George – Summerville 230 kV #1 and St. George – Summerville 230 kV #2 (SPDC)	<mark>Canadys – Church Creek 230 kV</mark>	<mark>103% (376.3 MVA)</mark>
20205	C3: Pepperhill – Summerville 230 kV and Summerville 230/115 kV Transformer 1/2	Summerville 230/115 kV Transformer 2/1	99% (336 MVA)
20205	C3: Church Creek – Faber Place 230 kV and Church Creek 230/115 kV Transformer 1/2	Church Creek 230/115 kV Transformer 2/1	100% (336 MVA)

C5 Contingency: Loss of St. George – Summerville 230 kV #1&2

Phase I: Fold Canadys – Williams 230 kV line into Pepperhill

- Causes flow to be more evenly split from Canadys to Church Creek and Williams
- Breaks 49 mile line into two segments of 30 and 19 miles
- Allows for 2 year delay of Canadys Ritter 230 kV construction

South Carolina Regional Transmission Planning

Phase II: Rebuild Canadys – Ritter 115 kV to SPDC 230/115 kV

Contingency	Monitored Element	Pre-Flow (Rating)	Post-Flow (Rating)
C5: St. George – Summerville 230 kV #1 and	Canadys – Church Creek 230 kV	103% (376.3 MVA)	91% (376.3 MVA)
St. George – Summerville 230 kV #2 SPDC			
C3: <u>Pepperhill</u> – Summerville 230 kV and Summerville 230/115 kV Transformer 1/2	Summerville 230/115 kV Transformer 2/1	99% (336 MVA)	92% (336 MVA)
C3: Church Creek – Faber Place 230 kV and Church Creek 230/115 kV Transformer 1/2	Church Creek 230/115 kV Transformer 2/1	100% (336 MVA)	107% (336 MVA)

South Carolina Regional Transmission Planning

Questions?

Proposed Transmission Expansion Plan

Santee Cooper

Rick Thornton

Transmission Network Completed Projects

- Purrysburg-McIntosh 230 kV Line #2
- Richburg 230-69 kV Substation
- Winnsboro-Richburg 230 kV Line

04/2015 05/2015 05/2015

Transmission Network Active Projects

•	Winyah-Bucksville 230 kV Line	12/2015
•	Richburg-Flat Creek 230 kV Line	06/2016
•	Bucksville-Garden City 115 kV Line	06/2016
•	Carnes Crossroads-Medway 115 kV Line #2	06/2016
•	Jefferies-Medway 115 kV Line #2	06/2016
•	Bucksville-Myrtle Beach 115 kV Line	12/2016
•	Pringletown 115 kV Switching Station	12/2016
•	Perry Road-Myrtle Beach #3	06/2017
•	Pine Level-Allen #2 115 kV Line	06/2017
•	New Harleys Bridge 115-69 kV Substation	12/2017
•	Sandy Run 230-115 kV Substation	05/2018
•	Pomaria-Sandy Run 230 kV Line	05/2018
•	Marion-Red Bluff 230 kV Line	12/2018
•	Sandy Run-Orangeburg 230 kV Line	06/2019
	CCE 2.C	
	A SCANA COMPANY	santee cooper

Carnes-Medway115 kV Line #2 Jefferies-Medway 115 kV Line #2

A SCANA COMPANY

Pringletown 115 kV Switching Satation

A SCANA COMPANY

78

santee cooper

South Carolina Regional Transmission Planning

Transmission Network Planned Projects

•	New Harleys Bridge 115-69 kV Substation	12/2017
•	SCE&G Church Creek / Ritter-SCPSA Johns Island	12/2017
•	SCE&G Queensboro-SCPSA Johns Island	
	115 kV Interconnection	06/2018
•	Carnes-Harleys Bridge 115 kV Line via McQueen	12/2020
•	Dalzell-Lake City 230 kV Line	04/2020
•	Sandy Run-Pinewood 230 kV Line	12/2021

Carnes Crossroads-Harleys Bridge 115 kV Line Via McQueen and Ridgeville

Dalzell-Lake City 230 kV Line

Sandy Run-Pinewood 230 kV Line

Proposed Transmission Expansion Plan

Stakeholder Input, Comments and Questions

Reliability Transmission Planning Studies Schedule

Clay Young

- Jan Feb Models Updated
- March April TPL Analysis
- May June 2016 TPL Reports Developed
- 3rd Quarter 2016 SCRTP Meeting Results Reported

Reliability Assessment Studies

Rick Thornton and Jeff Neal

Multi-Party Assessments

- Carolina Transmission Coordination Arrangement
 (CTCA) Assessments
- Southeastern Electric Reliability Corporation (SERC) Assessments
- Eastern Interconnection Planning Collaboration (EIPC)

CTCA Future Year Assessments

CTCA Purpose

- Collection of agreements developed concurrently by the Principals, Planning Representatives, and Operating Representatives of multiple two-party Interchange Agreements
- Establishes a forum for coordinating certain transmission planning and assessment and operating activities among the specific parties associated with the CTCA

CTCA Purpose

Interchange Agreements associated with the CTCA

Duke Energy Carolinas ("Duke") and Duke Energy Progress ("Progress")
Duke Energy Carolinas ("Duke") and South Carolina Electric & Gas Company ("SCE&G")
Duke Energy Carolinas ("Duke") and South Carolina Public Service Authority ("SCPSA")
Duke Energy Progress ("Progress") and South Carolina Electric & Gas Company ("SCE&G")
Duke Energy Progress ("Progress") and South Carolina Public Service Authority ("SCPSA")
South Carolina Electric & Gas Company ("SCE&G") and South Carolina Public Service Authority ("SCPSA")

CTCA Power Flow Study Group

- Duke Energy Carolinas ("Duke")
- Duke Energy Progress ("Progress")
- South Carolina Electric & Gas ("SCEG")
- South Carolina Public Service Authority ("SCPSA")

CTCA Studies

- Assess the existing transmission expansion plans of Duke, Progress, SCEG, and SCPSA to ensure that the plans are simultaneously feasible.
- Identify any potential joint solutions that are more efficient or costeffective than individual company plans, which also improve the simultaneous feasibility of the Participant companies' transmission expansion plans.
- The Power Flow Study Group ("PFSG") will perform the technical analysis outlined in this study scope under the guidance and direction of the Planning Committee ("PC").

CTCA Studies 2015 Study

- 2020 Summer (Near-Term)
- 2026 Summer (Long-Term)
- Final report is completed and approved (October)
- Study results indicated the Participants' current transmission expansion plans are simultaneously feasible for the studied years' conditions
- No potential joint alternatives were identified or needed

SERC LTSG Assessments

SERC Future Year Assessments Long Term Study Group (LTSG)

SERC LTSG Study Purpose

- Analyze the performance of the members' transmission systems and identify limits to power transfers occurring non-simultaneously among the SERC members.
- Evaluate the performance of bulk power supply facilities under both normal and contingency conditions for future years.
- Focus on the evaluation of sub-regional and company-tocompany transfer capability.

SERC Long Term Study Group 2015 Work Schedule

- LTSG Data Bank Update May 12-14 Hosted by Southern
- Study Case: 2020 Summer Peak Load
- Study has been completed.
- Final Report will be approved in December

Eastern Interconnection Reliability Assessment Group (ERAG) Assessments

ERAG Assessments

No Long Term Study Performed

Multi-Party Assessment Studies

SCE&G-Southern Company Joint Study

- Purpose
 - Conduct a joint study with SCE&G and Southern Company (and all of its affiliated members) to determine the most feasible and economic solution to address constraints identified on the Savannah River Services – Vogtle 230 kV SCE&G/SOCO tie line
- Case Assumptions
 - 2014 Series Transmission Planning Power Flow cases (Version 2A)
 - Study Years: 2018, 2019, 2020, and 2024
 - Load Levels include Summer Peak and Shoulder Peak conditions
- Analysis to be performed
 - Power Flow/Bus Configuration
 - Stability
 - Short Circuit

SCE&G-Southern Company Joint Study

South Carolina Regional Transmission Planning

Reliability Assessment Studies

Questions?

Eastern Interconnection Planning Collaborative (EIPC)

Activities Update

Phil Kleckley

About the EIPC

- 20 Planning Authority (Planning Coordinator) members including ISOs/RTOs, non-ISO regions, municipals, cooperatives, ...
- Members are from the U.S. and Canada
- Approximately 95% of the Eastern Interconnection customers covered

EIPC Supporting Activities

- CEII: Continue to make EIPC models available to those who have completed the EIPC CEII process (based on regional clearance)
- Website: <u>www.eipconline.com</u>
 - Continue to host the EIPC website
 - Post material from both grant and non-grant EIPC activities

EIPC Stakeholder Process

- Existing stakeholder groups previously created for other purposes such as compliance with FERC Order 890 will used to facilitate stakeholder input
- Ensure a regional focus:
 - Present roll-up models and results
 - Receive stakeholder feedback, input, comments and suggestions on specific scenarios to be studied
 - Present the results of scenario studies
 - Seek stakeholder feedback on reports that are created

114

EIPC 2016 Study

- Webinar conducted November 17, 2015
- Presented 2025 Summer Peak and 2025 Winter Peak Roll-up cases development
- Presented sample scenarios options to stakeholders for 2016 study

2025 Summer/Winter Peak Roll-up Cases Transmission Gap Analysis

- Consistent with NERC TPL Standards
 No transmission elements loaded beyond capacity
 No voltages above or below PCs planning criteria
- Contingencies
 - ≻ N-0 contingency: All facilities in-service
 - N-1 contingency: Event resulting in loss of a single element (230kV and above + selected 161kV, all transformers with high side of 230kV and above)

2025 Summer/Winter Peak Roll-up Cases Transmission Gap Analysis

- Numerous high and low voltage issues were identified for N-0 contingency and N-1 contingency cases
- Conceptual solutions identified and under review

2025 Summer/Winter Roll-up Cases Linear Transfer Analysis

Analyzed 5,000 MW transfers between selected areas
 Additional cases with high base transfers from/to NPCC

- Monitored 100kV and above
 - ➢ N-0 branch overloads
 - N-1 branch overloads (including NYISO specific regional contingencies)
 - Conceptual solutions provided by PCs

2025 Summer/Winter Roll-up Cases Linear Transfer Analysis

- Currently planned transmission is capable of transferring power between areas
 NPCC/MISO and NPCC/PJM exceptions
- Incremental transfer capabilities ranged from 335 MW to over 5,000 MW
 - Limits should be further analyzed and validated by limiting PCs

EIPC Study Stakeholder Input

- Principles and Guidelines for Scenarios document posted on EIPC website
- Describes the types of scenarios to be analyzed in the 2016 study
- Provides a sample format for providing ideas on possible scenarios to be studied

120

EIPC Study Stakeholder Input

- All scenarios will be run as changes to the Roll-up cases
- Scenarios should not duplicate other local/regional planning efforts or transmission requests subject to analysis under the OATT provisions of any party
- Provides a sample format for providing ideas on possible scenarios to be studied
- EIPC to select up to 3 scenarios per biennial cycle

121

Schedule for Stakeholder Input

15	EIPC Webinar on Status of Roll-up Case	November 17, 2015	
	Development and Possible Scenarios for 2016	11:00am Eastern start	
16	Post Draft Roll-up Report	December 11, 2015	
17	Regional Meetings:	December - February	
	a. Present 2025S and 2025W roll-up base cases		
	a. Present results of roll-up case contingency		
	and transfer testing		
	a. Additional discussion on possible scenarios		
	a. Stakeholder feedback on possible scenarios		
	and which scenarios to select		
18	Stakeholder Written Input on Possible Scenarios	January 29, 2016	
	and the Draft Roll-up Report Due		
19	EIPC Webinar to discuss stakeholder feedback on	February 26, 2016	
	scenario options and prioritize scenarios to be		
	studied in 2016		
20	Stakeholder final comments on the scenarios due	March 2, 2016	
	to regional process or to EIPC@tva.gov		
21	EIPC Consideration of comments on scenario	March, 2016	
	selection and final determination of scenarios		
22	Final scenario descriptions & 2016 Schedule posted	March 21, 2016	
23	SSMLFWG Begins Work on Scenarios	March 31, 2016	

Questions?

Contact Phil Kleckley

pkleckley@scana.com

Next SCRTP Meeting

- Stakeholder Group will select up to 5 Economic Power Transfer Sensitivities for study
- Review of near-term Major Transmission Expansion Plans
- Assessment and Planning Study Update
- EIPC Update
- SCRTP Email Distribution List will be notified
- Register online

South Carolina Regional Transmission Planning

Stakeholder Meeting

Hilton Garden Inn Charleston Airport

North Charleston, SC

December 09, 2015

